Интерстеллар: наука за кадром - Кип С. Торн
Шрифт:
Интервал:
Закладка:
Часть пространства, которую огненная оболочка занимает над и под экваториальной плоскостью, показана на рис. 6.4. Это большая пончикообразная область. На рисунке я опускаю искривления пространства: они бы помешали изобразить огненную оболочку в трех измерениях.
.
Рис. 6.4. Пончикообразная область вокруг Гаргантюа, занятая огненной оболочкой
На рис. 6.5 показаны примеры лучей света (фотонных орбит), задержавшихся в огненной оболочке.
Рис. 6.5. Примеры лучей света (фотонных орбит), задержавшихся в огненной оболочке; рассчитано с помощью уравнений теории относительности
Черная дыра находится в центре каждой из этих орбит. Крайняя слева орбита закручивается вокруг экваториальной области небольшой сферы, всегда в направлении вращения Гаргантюа, и примерно совпадает с нижней (внутренней) красной орбитой на рис. 6.3 и 6.4. Следующая орбита на рис. 6.5 закручивается вокруг сферы побольше, в направлении, близком к осевому, но со смещением в сторону хода вращения дыры. Третья орбита еще больше и тоже близка к осевому направлению, но со смещением против хода. Четвертая – направлена против вращения, она находится почти в экваториальной области и приблизительно совпадает с верхней (внешней) красной экваториальной орбитой на рис. 6.3 и 6.4. На самом деле все эти орбиты вложены одна в другую, как матрешки, раздельно я показал их для наглядности.
Некоторые из задержавшихся в огненной оболочке фотонов покидают ее, вылетая наружу и удаляясь от Гаргантюа по спирали. Остальные фотоны покидают оболочку, приближаясь по спирали к Гаргантюа и падая за горизонт. Задержавшиеся в огненной оболочке, но покидающие ее фотоны имеют большое значение для изображения Гаргантюа в фильме. Они подчеркивают тень Гаргантюа, как ее видит экипаж «Эндюранс», и формируют вокруг края тени тонкую яркую линию, «огненное кольцо» (см. главу 8).
Управлять космическим кораблем вблизи Гаргантюа нелегко – из-за очень больших скоростей. Чтобы не погибнуть, планета, звезда или космический корабль должны противопоставить огромной гравитации Гаргантюа центробежную силу сравнимой величины. Это означает, что необходимо двигаться с очень большой скоростью – скоростью, близкой к световой. В Кип-версии космолет «Эндюранс», ожидающий на орбите в 10 радиусов Гаргантюа возвращения экипажа с планеты Миллер, движется со скоростью в одну треть скорости света (c/3). А планета Миллер движется со скоростью, составляющей 55 процентов от скорости света (0,55c).
В Кип-версии «Рейнджер» может добраться от орбиты ожидания до планеты Миллер (рис. 7.1), если снизит скорость с трети световой до значительно меньшей, чтобы гравитация Гаргантюа потянула его к дыре. Когда же он окажется рядом с планетой, «Рейнджер» должен развернуться в направлении от Гаргантюа. А поскольку, падая к дыре, он наберет слишком большую скорость, ему нужно будет замедлиться примерно на c/4, чтобы его скорость сравнялась со скоростью планеты (0,55c) и он мог с ней сблизиться.
Рис. 7.1. Полет «Рейнджера» к планете Миллер в Кип-версии
Каким же способом Купер, пилот «Рейнджера», может добиться таких резких изменений скорости?
Требуемый перепад скорости примерно равен c/3, или 100 000 километров в секунду (в секунду, не в час!).
Однако самые мощные из ракет, созданных на сегодняшний день людьми, способны развить скорость лишь до 15 километров в секунду, то есть в семь тысяч раз меньше, чем нужно. В фильме космолет «Эндюранс» долетает от Земли до Сатурна за два года, средняя его скорость при этом равна 20 километрам в секунду, то есть в пять тысяч раз меньше, чем нужно. Думаю, самый быстрый космический корабль, который люди смогут построить в XXI веке, будет развивать скорость до 300 километров в секунду. Это потребует масштабных научно-исследовательских работ по созданию термоядерного ракетного двигателя, и все же его скорость будет в три тысячи раз меньше, чем нужно.
К счастью, природа все же дарит нам возможность совершать огромные скачки скоростей, такие как c/3: гравитационные пращи вблизи черных дыр гораздо меньших размеров, чем Гаргантюа.
Звезды и небольшие черные дыры собираются вокруг гигантских черных дыр вроде Гаргантюа (подробнее об этом – в следующем параграфе). В Кип-версии Купер и его команда разузнали обо всех небольших черных дырах, вращающихся вокруг Гаргантюа. Они нашли среди них дыру, положение которой подходит, чтобы ее гравитация отклонила «Рейнджер» от его почти круговой орбиты и направила его к планете Миллер (рис. 7.2). Такой маневр называется «гравитационной пращой», и NASA успела не раз применить его в Солнечной системе; правда, использовалась не черная дыра, а планетарная гравитация (об этом – в конце главы).
.
Рис. 7.2. «Рейнджер» выполняет гравитационный маневр вокруг небольшой черной дыры, которая отклоняет его к планете Миллер
Этот маневр не показан и не обсуждается в «Интерстеллар», но позже Купер говорит: «Смотри, я могу обогнуть эту нейтронную звезду, чтобы притормозить». Торможение необходимо, поскольку, падая с орбиты «Эндюранс» к орбите планеты Миллер под действием огромного гравитационного притяжения Гаргантюа, «Рейнджер» набирает слишком большую скорость – он движется на c/4 быстрее, чем планета Миллер. На рис. 7.3 нейтронная звезда, находящаяся «слева» от планеты Миллер, меняет курс «Рейнджера» и замедляет его движение, что позволяет ему аккуратно приблизиться к планете.
Рис. 7.3. Гравитационная праща вокруг нейтронной звезды позволяет совершить посадку на планету
Однако в гравитационной праще есть своя опасность – это приливные силы (см. главу 4).
Чтобы резко сбросить скорость аж на c/4 или c/3, «Рейнджер» должен подлететь достаточно близко к небольшой черной дыре и неизбежно попадет под воздействие ее мощной гравитации. Если для маневра использовать нейтронную звезду или черную дыру с радиусом менее 10 000 километров, вблизи нее «Рейнджер» и его экипаж разорвет на части приливными силами (см. главу 4). Чтобы «Рейнджер» с экипажем уцелел, черная дыра должна быть не менее 10 000 километров в диаметре (приблизительно размер Земли).